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t. The main goal of this work is the numeri
al modeling of the for
ed 
onve
tive turbulent heat �ux ,for the turbulent in
ompressible �ow of air over a �at plate, with unheated starting lengths, for a variety of fourstep positions at Reynolds number up to 5.6 x 10

6. The numeri
al algorithm applied a 
onsolidate Reynolds andFavre averaging pro
ess for the turbulent variables. The turbulen
e model is the 
lassi
al κ − ǫ. The turbulentinner layer is modeled by velo
ity wall laws and temperature wall laws. The remaining non-linearities, due to lawsof wall, are treated by a minimal residual method. The numeri
al results for heat transfer, velo
ity, temperature,hydrodynami
 and thermal boundary layers are 
ompared with experimental data, in addition the numeri
al resultsare also 
ompared with empiri
al 
orrelation results. The Reynolds number range of the modeled �ows, based onthe length of �at plate is pla
ed between 10
5

< Re < 10
7. Two di�erent physi
al 
ases are analyzed, in the �rstone the velo
ity and the temperature �eld are un
oupled. In the se
ond 
ase the velo
ity and the temperature �eldare strongly 
oupled.keywords: Conve
tion, Flat plate, turbulen
e, wall laws, turbulen
e models, �nite elements.1. Introdu
tionThe obje
tive of this work is to analyze the e�
ien
y of the methodology used by the solver Turbo2D in themodeling of the for
ed 
onve
tion heat transfer in turbulent boundary layers, with and without the 
ouplingbetween the velo
ity and the temperature �elds.To make these analysis two distin
t physi
al situations, in the point of view of the relation between thevelo
ity and temperature �elds, were 
hosen. In the �ows studied experimentally by Reynolds et al. (1958) andby Taylor et al. (1990) the thermal and hydrodynami
 boundary layers are 
learly un
oupled. In the Ng (1981)test 
ase a strong dependen
y between both �elds is observed.The extension and the 
omplexity of the 
oupling existing between the turbulent �elds of momentum andenergy depends on the intensity of the velo
ity, pressure and temperature gradients involved, on the geometryof the physi
al solid boundary of the �ow and also, on the thermodynami
 behavior of the �uids involved inthe pro
ess. The degree of di�
ulty and the 
omputational 
ost of the numeri
al modeling of the problem aredire
tly related to existing 
oupling degree between the turbulent �elds of momentum and energy.The test 
ases of Reynolds et al. (1958) and of Taylor et al. (1990) represents for
ed, turbulent andin
ompressible �ows of air over horizontal, smooth, �at plates. The temperature �elds are spe
i�ed so that thebeginning of the thermal and the hydrodynami
 boundary layers are separated by an unheated starting length

ξ. There is an adiabati
 length in the beginning of ea
h plate, 
reated by the equality of the temperatures of thewall and the �ow. The thermal boundary layer begins in the point were both temperatures are di�erentiated,originating a heat �ux between the wall and the �ow. In all the studied situations the thermal boundary layeris developed over isothermal walls.The turbulent air �ows studied by Reynolds et al. (1958) and by Taylor et al. (199), o

urs with su
hvelo
ities, that so in the faster situation, 
reates Ma
h numbers under 0,2. The geometry in the solid boundary ofthe �ow is in
apable to provide the deta
hment of the hydrodynami
 boundary layer or 
hanging the 
urvaturesof the �uid movement. Under these 
onditions, the existing pressure gradients are of low intensity. The higher1
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es of temperature imposed are of 18 K, this means that the heated plate 
an not 
hange in a signi�
antway the spe
i�
 mass, the thermal 
ondu
tivity and the dynami
 vis
osity of the air.In the absen
e of signi�
ant pressure and temperature gradients, it is possible the adoption of the hypothesisthat the thermodynami
 proprieties of the �uid are 
onstants, this 
ondition is 
apable to break the 
ouplingexisting between the equations of 
onservation of momentum and energy and to make linear the 
onservationequation of energy.The system of governing equations, simpli�ed by the non varian
e of the thermodynami
 proprieties, admitsanalyti
al solution and, in the 
omputational point of view, allows the use of less expensive 
omputationalalgorithms of numeri
al resolution.Even with the restri
tion represented by the hypothesis of 
onstant values for the �uid thermodynami
proprieties, many problems of te
hnologi
al interest 
an be modeled with this formulation, being distinguishedbe
ause of its re
ent importan
e, the problem 
reated by the ne
essity of 
ooling plates used in ele
troni
 
ir
uitsused in the 
omputational area.In the Ng (1981) test 
ase, a turbulent �ow of air at 293 K, totally developed in a wind tunnel is 
ondu
ed toan horizontal smooth �at plate, heated up to 1250 K. The great di�eren
e between the temperature of the walland of the �ow, produ
es important variations in the spe
i�
 mass, in the dynami
 vis
osity, in the spe
i�
 heatsand in the thermal 
ondu
tivity of the �uid. The variation of those proprieties with temperature is responsibleby the 
oupling between the equations of 
onservation of momentum and energy and by the non linear behaviorof the energy 
onservation equation.The solver Turbo2D is a program of resear
h, that is been developed in the Group of Complex Fluid Dynami
s- Vortex, of the Me
hani
al Engineering Department of the University of Brasília. This solver is based on theadoption of the �nite elements te
hnique, under the formulation of pondered residuals proposed by Galerkin,adopting in the spatial dis
retization of the 
al
ulus dominium the triangular elements of the type P1-isoP2, asproposed by Brison, Bu�at, Jeandel and Serres (1985).Considering the un
ertainties normally existing in the initial 
onditions of the problems that are numeri
allysimulated, it is adopted the temporal integration of the governing equations system. In the temporal integrationpro
ess the initial state 
orresponds the beginning of the �ow, when velo
ity and pressure �elds are 
onsiderednulls. The end of the pro
ess o

urs when the temporal variations of the velo
ity, pressure, temperatureand other turbulent variables stop. The temporal dis
retization of the system of the governing equations,implemented by the algorithm of Brun (1988), uses sequential semi-impli
it �nite di�eren
es, with trun
ationerror of order 0(∆t) and allows to make linear the equation system at ea
h step of time.The resolution of the 
oupled equations of 
ontinuity and momentum is done by a variant of Uzawa�salgorithm proposed by Bu�at (1981). The statisti
al formulation, responsible for the obtaining of the system ofaverage equations, is done with the simultaneous usage of the Reynolds (1895) and Favre (1965) de
omposition.The Reynolds stress of turbulent tensions is 
al
ulated by the κ − ε model, proposed by Jones and Launder(1972) with the modi�
ations introdu
ed by Launder and Spalding (1974). The turbulent heat �ux is modeledalgebrai
ally using the turbulent Prandl number with a 
onstant value of 0,9.In the program Turbo2D, the boundary 
onditions of velo
ity and temperature 
an be 
al
ulated by fourvelo
ity and two temperature wall laws. The wall laws used in this work are of velo
ity are: Mellor wall law(1966), Nakayama and Koyama wall law (1984), the 
lassi
 logarithm wall law and the velo
ity wall law ofCruz and Silva Freire (1998). The temperature wall laws available are: the Cheng and Ng (1982) and the Cruzand Silva Freire temperature wall law. In this work, as the pressure gradients are very low, we used only thelogarithm wall law for velo
ity and the Cheng and Ng law for temperature. The numeri
al instability resulted ofthe expli
it 
al
ulus of the boundary 
onditions of velo
ity, trough the evolutive temporal pro
ess, is 
ontrolledby the algorithm proposed by Fontoura Rodrigues (199). The numeri
al os
illations indu
ed by the Galerkinformulation, resulting of the 
entered dis
retization applied to a paraboli
 phenomenon, that is the modeled�ow, are 
ushioned by the te
hnique of balan
ed dissipation, proposed by Huges and Brooks (1979) and Kelly,Nakazawa and Zienkiewi
z (1976) with the numeri
al algorithm proposed by Brun (1988).In order to quantify the wideness of range and the 
onsisten
e of the numeri
al modeling done by the solverTurbo2D, the parietal heat �uxes obtained numeri
ally are 
ompared to the experimental data of Reynolds etal. (1958), Taylor et al. (1990) and Ng (1981), and also to empiri
al 
orrelations.2. Governing EquationsThe system of non-dimensional governing equations, for a dilatable and one phase �ow, without internalenergy generation, and in a subsoni
 regime is:
∂ρ

∂t
+

∂ρui

∂xi

= 0, (1)2
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∂(ρT )

∂t
+

∂(ρuiT )

∂xi

=
1

RePr

∂

∂xi

(
k

∂T

∂xi

) (3)
ρ(T + 1) = 1. (4)In this system of equations ρ is the �uid spe
i�
 mass, t is the time, xi are the spa
e 
artesian 
oordinates intensor notation, µ is the dynami
 vis
osity 
oe�
ient, δij is the Krone
ker delta operator, gi is the a

elerationdue to gravity in tensor notation, T is the temperature, τij is the vis
ous stress tensor in tensor notation, γ isthe ratio of spe
i�
 heats, k is the thermal 
ondu
tivity, Re is the Reynolds number, Fr is the Froud number,

Pr is the Prandtl number, Mo is the Ma
h number, and the non dimensional 
omponents of pressure are:
p =

p − pm

ρoU2
o

and p̂ =
p

po

(5)More details about the dimensionless pro
ess are given by Brun (1988). In order to simplify the notationadopted, the variables in their dimensionless form have the same representation as the dimensional variables.The Reynolds, Prandtl, Froude and Ma
h numbers are de�ned with the referen
e values adopted in this pro
ess.2.1. The Turbulen
e ModelIn this work all the dependent variables of the �uid are treated as an average value plus a �u
tuation of thisvariable in a determinate point of spa
e. In order to a

ount variations of spe
i�
 mass, the model used appliesthe well known Reynolds (1985) de
omposition to pressure and �uid density and the Favre (1965) de
ompositionto velo
ity and temperature. In the Favre (1965) de
omposition a randomize generi
 variable ϕ is de�ned as:
ϕ (~x, t) = ϕ̃ (~x) + ϕ

′′

(~x, t) with ϕ̃ =
ρϕ

ρ̄
. (6)Applying the Reynolds (1895) and Favre (1965) de
ompositions, to the governing equations, and taking theaverage value of those equations, we obtain the mean Reynolds equations:

∂ρ

∂t
+

∂

∂xi

(ρũi) = 0, (7)
∂

∂t
(ρũi) +

∂

∂xj

(ρũjũi) = −
∂p

∂xi

+
∂

∂xj

[
τij − ρu′′

j u′′

i

]
+ ρgi, (8)where

τij = µ

[(
∂ũi

∂xj

+
∂ũj

∂xi

)
−

2

3

∂ũl

∂xl

δij

]
, (9)

∂(ρT̃ )

∂t
+

∂(ũiT̃ )

∂xi

=
∂

∂xi

(
α

∂T̃

∂xi

− ρu′′

i T ′′

) (10)
p = ρRT̃ (11)In these equations α is the mole
ular thermal di�usivity and two news unknown quantities appear in themomentum (8) and in the energy equation (10), de�ned by the 
orrelations between the velo
ity �u
tuations,the so-
alled Reynolds Stress, given by the tensor −ρu′′

i u′′

j and by the �u
tuations of temperature and velo
ity,the so-
alled turbulent heat �ux, de�ned by the ve
tor −ρu′′

i T ′′.The Reynolds stress of turbulent tensions is 
al
ulated by the κ− ε model, proposed by Jones and Launder(1972) with the modi�
ations introdu
ed by Launder and Spalding (1974), where
−ρu′′

i u′′

j = µt

(
∂ũi

∂xj

+
∂ũj

∂xi

)
−

2

3

(
ρκ + µt

∂ũl

∂xl

)
δij , (12)with

κ =
1

2
u′′

i u′′

i . (13)3
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µt = Cµρ̄

κ2

ε
=

1

Ret

. (14)The turbulent heat �ux is modeled algebrai
ally using the turbulent Prandl number Prt equal to a 
onstantvalue of 0,9 by the relation
−ρu′′

i T ′′ =
µt

Prt

∂T̃

∂xi

. (15)In the equation (14) Cµ is a 
onstant of 
alibration of the model, that values 0, 09, κ represents the turbulentkineti
 energy and ε is the rate of dissipation of the turbulent kineti
 energy. On
e that κ and ε are additionalvariables, we need to know there transport equations. The transport equations of κ and ε were dedu
ed byJones and Launder (1972), and the 
losed system of equations to the κ − ε model is given by:
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∂ũi

∂xj

+
∂ũj
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1

Re
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1
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∂xl

+ ρ̄κ

] , (24)with the model 
onstants given by:
Cµ = 0, 09 , Cε1 = 1, 44 , Cε2 = 1, 92 , Cε3 = 0, 288 , σκ = 1 , σε = 1, 3 , P rt = 0, 9 .2.2. Near Wall TreatmentThe κ − ǫ model is in
apable of properly representing the �uid behavior in the laminar sub-layer, in thebu�er sub-layer and in the beginning of the logarithmi
 regions of the turbulent boundary layer. To solve thisin
onvenien
e, the standard solution is the use of wall laws, 
apable of properly representing the �ow in theinner region of the turbulent boundary layer. There are four velo
ity and two temperature laws of the wallimplemented on Turbo2D 
ode. In this work, 
onsidering that no signi�
ative pressure gradients are involved,are used the logarithm law for velo
ity. The logarithm law of the wall for velo
ity is already well known, andfurther explanations are unne
essary.For the near wall temperature, Cheng and Ng (1982) derived an expression similar to loga-rithmi
 law of thewall for velo
ity. For the numeri
al 
al
ulation purposes, the interse
tion point between laminar and logarithmi
sub-layers are de�ned at y∗ = 15, 96, with y∗ = ufδ/ν, where uf is the fri
tion velo
ity 
al
ulated by the relation

uf =

[(
1

Re
+

1

Ret

)
∂ũ

∂xj

]

δ

, (25)4
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ν is the kineti
 vis
osity and δ is the distan
e until the wall. The temperature wall laws for laminar andlogarithmi
 sub-layers are respe
tively

(T0 − T )y

Tf

= y∗ Pr and (T0 − T )y
Tf

=
1

KNg

ln y∗ + CNg , (26)where T0 is the environmental temperature and Tf is the fri
tion temperature, de�ned by the relation
Tfuf =

[(
1

Re Pr
+

1

Ret Prt

)
∂T̃

∂xj

]

δ

. (27)In the equation (26) the 
onstants KNg and CNg are, respe
tively, 0,8 and 12,5. The turbulent Prandtlnumber Prt is assumed 
onstant and equal to 0,9.For the turbulent kineti
 energy κ and for the rate of dissipation of the turbulent kineti
 energy ε, the nearwall values are taken by the following relations
κ =

[
uf

2

√
Cµ

]

δ

and ε =

[
uf

3

Kδ

]

δ

, (28)with K = 0, 419.2.3. The Stanton numberIn this work the parietal heat �ux is estimated in a non dimension form by using the lo
al Stanton number,
al
ulated numeri
ally by two distin
t manners. The �rst one is based on a 
lassi
al way to turn the lo
alparietal heat �ux qx in a dimensionless form:
Stx =

qx

ρcpu∞(Tw − T∞)
where, for a �at plate qx = −k

(
∂T

∂y

)

y=0

. (29)In the equation above, the numeri
al method to 
ompute the temperature gradient was by taking thetemperature di�eren
e between the �rst node of our mesh and the temperature in the wall, and dividing it bythe distan
e of the �rst node and the wall. This pro
edement was made, be
ause the solver uses wall laws, andby this reason our 
al
ulus does not goes until the wall.Another way to 
ompute the lo
al Stanton number is derived from a diversi�
ation of the Reynolds analogymade by Colburn (1933), for �uids with the Prandtl number equal or larger than 0, 5. The Colburn (1933)empiri
al 
orrelation establish a relationship between the lo
al Stanton number Stx, the lo
al fri
tion 
oe�
ient
Cfx and the Prandtl number Pr:

Stx =
Cfx

2Pr
2

3

. (30)The se
ond form to 
al
ulate the lo
al Stanton number used in this work, proposed by Kays and Crawford(1993), is an improvement of the equation (30) by the use of the 1

7
power law for temperature and velo
itypro�les, where δu and δT are, respe
tively, the thi
kness of the velo
ity and temperature boundary layers,

Stx =
Cfx

2Pr
2

5

(
δu

δT

) 1

7

. (31)In the equation above, the numeri
al values for δu and δT were obtained by taking the heights of 300points in the dire
tion of the �ow, with velo
ities equal to 0, 99u∞ for the hydrodynami
 boundary layer, andtemperatures equal to Tw − 0, 99(Tw − T∞) for the thermal boundary layer.To evaluate the a

ura
y of the numeri
al results is possible to determine the lo
al Stanton number by usingthe empiri
al 
orrelation for the unheated starting length problem over �at plate:
Stx =

1

2

Cfx

Pr
2

5

[
1 −

(
ξ

x

)0,9
]
−

1

9

. (32)To 
al
ulate the lo
al fri
tion 
oe�
ient Cfx used in equation (31), it was used the numeri
al value of thelo
al fri
tion velo
ity 
al
ulated by the Turbo2D
Cfx

2
=

τw

ρu2
∞

with τw = ρu2

f so Cfx

2
=

u2

f

u2
∞

. (33)5
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al
ulate the lo
al fri
tion 
oe�
ient Cfx used in the empiri
al 
orrelation, equation (32), is employedthe empiri
al value for turbulent boundary layer
Cfx

2
= 0.0287Re

−
1

5

x . (34)3. Numeri
al methodologyThe numeri
al solution of a dilatable turbulent �ow, has as main di�
ulties: the 
oupling between thepressure, velo
ity and temperature �elds; the non-linear behavior of the momentum and energy equations;the expli
it 
al
ulations of boundary 
onditions in the solid boundary; the methodology of use the 
ontinuityequation as a manner to link the 
oupling �elds of velo
ity and pressure.The solution proposed in the present work suggests a temporal dis
retization of the system of governingequations with a sequential semi-impli
it �nite di�eren
e algorithm proposed by Brun (1988) and a spatialdis
retization using �nite elements of the type P1-isoP2. The temporal and spatial dis
retization implementedin Turbo 2D is presented in Fontoura Rodrigues (1990).4. Numeri
al ResultsAll the studied experimental test 
ases 
onsisted in an horizontal heated �at plate, wit
h re
eives air in aparallel dire
tion. The di�eren
e between the 
ases studied are in the value of properties su
h as the free streamvelo
ity of the �ow, the size and temperature of the plate, and the size of the unheated starting length. Thephysi
al parameter 
ompared from the numeri
al simulation to experimental data is basi
ally the lo
al Stantonnumber. The numeri
al value of the lo
al Stanton number was 
al
ulated of two di�erent ways, by using theequations (29) 
alled "numeri
al 1", and using equation (31) 
alled "numeri
al 2".The Reynolds et al. (1958) test 
ase is 
hara
terized by free stream velo
ities of 19, 5m/s and 21, 9m/s. Inthis work the variation range of the lo
al Reynolds number is pla
ed between 105 < Rex < 3, 5x106. There is adi�eren
e of 11K between the temperature of the plate and of the free stream �ow. The test se
tion has 1, 53mlong.The test 
ases of Taylor et al. (1990) are 
hara
terized by free stream velo
ities of 28m/s and 67m/s. Inthis work the variation range of the lo
al Reynolds number is pla
ed between 105 < Rex < 107. There is adi�eren
e of 18K between the temperature of the plate and of the free stream �ow for the �ow of 28m/s and adi�eren
e of 12K for the �ow of 67m/s.The test se
tion has 2, 4m long.In the test 
ases of Reynolds et al. (1958) and Taylor et al. (1990), the values of the unheated startinglength ξ, 
hange as the free stream velo
ity 
hanges. In this work, the following pro�les were 
onsidered: for
u∞ = 67m/s the values of ξ are 0, 56m, 0, 86m, 1, 36m; for u∞ = 28m/s the values of ξ are 0, 36m, 0, 76m,
1, 36m; for u∞ = 21, 9m/s the value of ξ is 0, 7243m; for u∞ = 19, 5m/s the value of ξ is 0, 415m. Thesimulations were made for all available results, in both works.The Ng (1981) test 
ase is 
hara
terized by a free stream velo
ity of 10, 7m/s. In this work the variationrange of the lo
al Reynolds number is pla
ed between 5x105 < Rex < 7, 8x105. There is a di�eren
e of 957Kbetween the temperature of the plate and of the free stream �ow. The test se
tion has 0, 25m long. In this 
asethe plate has the same temperature in all the length of the test se
tion.The inlet 
onditions for Reynolds et al. (1958) and Taylor et al. (1990) test 
ases are uniform pro�les forvelo
ity, temperature, kineti
 turbulent energy and its dissipation rate. In the Ng (1981) test 
ase, a turbulentdeveloped pro�le for velo
ity, temperature, turbulent kineti
 energy and its dissipation rate. In the top partof both meshes was imposed 
onditions of atmospheri
 pressure, ambient temperature and null derivations for
κ, ε, temperature and velo
ity. In the exit of both meshes was imposed 
ondition of atmospheri
 pressure andnull derivations of all other variables.In the �gure bellow, are presented ampliations of the wall region of the two meshes used to simulate thethree test 
ases.

X (m)

Y
(m

)

0 0.5 1 1.5 2
0

0.1

0.2 Nº Nodes
18447
Nº Elements
35872

Figure 1: Velo
ity mesh used in Taylor et al. (1990) and Reynolds et al. (1958) test 
ases6
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Figure 2: Velo
ity mesh used in Ng (1981) test 
aseThe adoption of the same mesh in two di�erent test 
ases was based in the fa
t that the plate used in theReynolds et al. (1958) simulations is smaller than the plate used in the Taylor et al. (1990) simulations, besides,by the �rst analysis done for Taylor et al. (1990) test 
ases, was observed that the re�nement level of the meshwas su�
ient to des
ribe the physi
al phenomenon.In the following graphi
s, �gures 3, 4 and 5, done for Taylor et al. (1990) and Reynolds et al. (1958)simulations, the empiri
al 
orrelation was obtained by the use of equation (32) with the lo
al fri
tion 
oe�
ient
al
ulated by equation (34), and to the numeri
al solutions it was used equation (29), 
alled "numeri
al 1" andequation (31), 
alled "numeri
al 2". So we 
ould 
ompare, with the experimental data, the numeri
al and theempiri
al 
orrelation adjust term of a step wall temperature distribution in the 
al
ulus of the lo
al Stantonnumber.
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(d)Figure 3: Lo
al Stanton number for Taylor et al. (1990) test 
ase. U∞ = 67 - Isothermal plate (a), ξ=0,56 m(b), ξ=0,86 m (
) and ξ=1,36 m (d)
7
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(d)Figure 4: Lo
al Stanton number for Taylor et al. (1990) test 
ase. U∞ = 28 - Isothermal plate (a), ξ=0,36 m(b), ξ=0,76 m (
) and ξ=1,36 m (d)
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(b)Figure 5: Lo
al Stanton number for Reynolds et al. (1958) test 
ase. U∞ = 19.5 m/s with ξ= 0,415 m (a) -and 21.9 m/s with ξ=0,7243 m (b)The following graphi
s, �gures 6 and 7, done for the Ng (1981) test 
ase, tries to show the pre
ision of the
ode to 
al
ulate the thermal and hydrodynami
 �eld, in 
ases were the velo
ity and the temperature �eld are8
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oupled.In the graphi
 of the �gure 6 is shown the variation of the hydrodynami
 and thermal boundary layerthi
kness as the air �ows over the strongly heated plate of Ng (1981) test 
ase.In the �gure 7 is shown the variation of the lo
al Stanton number 
al
ulated of two numeri
al ways. The �rstnumeri
al value was 
al
ulated though the derivation of the temperature in the �rst node of our mesh, Eq.(29),and the se
ond one was obtained with the relation between the thermal and the hydrodynami
 boundary layerthi
kness, Eq.(31), using the numeri
al value of Cfx.
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(b)Figure 6: Hydrodynami
 (a) and thermal (b) boundary layer thi
kness for Ng (1981) test 
ase.
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Figure 7: Stanton number - Ng (1981) test 
ase.5. Con
lusionsWe 
an 
on
lude by this work, that the numeri
al simulation of a 
omplex turbulent �ow, done by thenumeri
al methodology employed by the program Turbo2D, produ
es great results in the modeling of the for
ed
onve
tive turbulent heat �ux, in problems were the velo
ity and temperature �elds are 
oupled or un
oupled.The results shown in �gures 3, 4, 5, 6 and 7, shows that the numeri
al results 
al
ulated by Turbo2D solverprodu
es very good agreement with the experimental and empiri
al 
orrelation results. So, for a 
onsolidate
omputational method that provides good values of the thermal and hydrodynami
 boundary layer thi
knessalong the wall, the numeri
al heat �ux determined by using equation(31) is very a

urate for turbulent �owsover �at plate boundary layers. 9



Pro
eedings of the ENCIT 2006, ABCM, Curitiba � PR, Brazil � Paper CIT06-0373All the results obtained numeri
ally show that the determination of the turbulent parietal heat �ux usingequation (31), based on the thermal and hydrodynami
al boundary layer thi
kness, produ
es better results thanthe ones obtained with equation (29), based on the temperature gradient in the normal dire
tion to the wall.The results obtained with the equation (29) 
an be improved if more re�ned 
al
ulation meshes are employed.6. A
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